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Abstract
We argue that one can factorize the difference equation of hypergeometric type
on non-uniform lattices in the general case. It is shown that in the most cases
of q-linear spectrum of the eigenvalues, this directly leads to the dynamical
symmetry algebra suq(1, 1), whose generators are explicitly constructed in
terms of the difference operators, obtained in the process of factorization. Thus
all models with the q-linear spectrum (some of them, but not all, previously
considered in a number of publications) can be treated in a unified form.

PACS numbers: 02.30.Gp, 02.90.+p

1. Introduction and preliminaries

In this paper we continue the study, started in [1], on the factorization of the hypergeometric-
type difference equation on non-uniform lattices, i.e., of the equation [2]

σ(s)
�

�x
(
s − 1

2

) [∇y(s)

∇x(s)

]
+ τ(s)

�y(s)

�x(s)
+ λy(s) = 0,

σ (s) = σ̃ (x(s)) − 1

2
τ̃ (x(s))�x

(
s − 1

2

)
, τ (s) = τ̃ (x(s)),

(1)

where �y(s) := y(s + 1) − y(s),∇y(s) := y(s) − y(s − 1), σ̃ (x(s)) and τ̃ (x(s)) are
polynomials in x(s) of degree at most 2 and 1, respectively, and λ is a constant (see also [3]).
The difference equation (1) has polynomial solutions Pn(x(s); q) := Pn(s; q) of
hypergeometric type if and only if the lattice x(s) has the form [4, 5]

x(s) = c1(q)qs + c2(q)q−s + c3(q) = c1(q)[qs + q−s−µ] + c3(q), (2)
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where c1, c2, c3 and qµ := c1/c2 are constants which, in general, depend on q. An important
special case of the lattice x(s) is the q-linear lattice, which is obtained from (2) by assuming
that either c1(q) or c2(q) vanishes.

The polynomial solutions of the difference equation (1) correspond to the following
expression [3] for its eigenvalues λn(q):

λn(q) = C1q
n + C2q

−n + C3,

C1 = 1

2(1 − q)

(
τ̃ ′ +

σ̃ ′′

kq

)
, C2 = 1

2(1 − q−1)

(
τ̃ ′ − σ̃ ′′

kq

)
, (3)

C3 = − σ̃ ′′(1 + q)

2kq(1 − q)
− τ̃ ′

2
,

where τ̃ ′ and σ̃ ′′/2 are the coefficients of x(s) and x2(s) in the Taylor expansion for τ̃ (x(s)) and
σ̃ (x(s)), respectively, i.e., τ̃ (x(s)) = τ̃ ′x(s) + τ̃ (0) and σ̃ (x(s)) = σ̃ ′′/2 x2(s) + σ̃ ′(0)x(s) +
σ̃ (0).

Observe that the coefficients C1 and C2 of the qn and q−n terms, respectively, are fixed
by the functions σ and τ in (1), and so is the product C1C2. In what follows we denote by Lq

the value of C1C2 = ((σ̃ ′′/kq)
2 − (̃τ ′)2)

/
4k2

q .
The sequence {λn(q)} satisfies the following three-term recurrence relation (TTRR):

λn+2(q) − (q + q−1)λn+1(q) + λn(q) = 1
2

(
τ̃ ′k2

q − σ̃ ′′[2]q
) = C. (4)

Conversely, if {λn(q)} satisfy the TTRR (4), then it has the form λn(q) = C ′
1q

n + C ′
2q

−n + C ′
3.

Obviously, having used the initial conditions λ0(q) = 0 and λ1(q) = −τ̃ ′, one recovers the
expression (3).

It is well known [3] that under certain conditions the polynomial solutions of (1) are
orthogonal. For example, if σ(s)ρ(s)xk

(
s − 1

2

)∣∣
s=a,b

= 0, for all k = 0, 1, 2, . . . , then the
polynomial solutions possess a discrete orthogonality property

b−1∑
s=a

Pn(s; q)Pm(s; q)ρ(s)∇x1(s) = d2
n(q)δn,m, (5)

where the weight function ρ(s) is a solution of the Pearson-type difference equation [3]

�

�x
(
s − 1

2

) [σ(s)ρ(s)] = τ(s)ρ(s) or σ(s + 1)ρ(s + 1) = σ(−s − µ)ρ(s). (6)

If the lattice x(s) is a q-linear lattice, i.e., x(s) = cq±s + c3, then the σ(−s − µ) in (6)
should be substituted by σ(s) + τ(s)�x(s − 1/2). A more detailed information on orthogonal
polynomials on the non-uniform lattices can be found in [3, 5–8].

In [1] it has been shown that one can factorize the Nikiforov–Uvarov equation (1) with the
aid of raising and lowering operators, which can be constructed for solutions of this equation.
In this paper we wish to go one step further by studying the dynamical symmetry algebra for the
hypergeometric-type difference equation (1) on the non-uniform lattices (2). Our approach is
essentially based on the simple observation, formulated in [9]. In order to factorize an arbitrary
difference equation, one should express it explicitly in terms of the shift (or displacement)
operators exp

(
a d

ds

)
, which are defined as exp

(
a d

ds

)
f (s) = f (s + a), a is some constant. For

example, in the case of equation (1) this corresponds to the substitutions � = exp
(

d
ds

) − 1
and ∇ = 1 − exp

(− d
ds

)
. This procedure converts a difference equation into an eigenvalue

problem for a difference operator, represented by a linear combination of some shift operators
(with coefficients, which depend polynomially on the variable s). Since each term of this
linear combination is readily factorizable (because exp (α + β)A = exp αA exp βA, for an
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arbitrary operator A), the factorization of the whole linear combination, which represents the
initial difference equation, becomes straightforward.

Inspired by the appearance of Macfarlane’s [10] and Biedenharn’s [11] important
constructions of q-analogues of the quantum harmonic oscillator, this technique of factorization
of difference equations was later employed in a number of publications [12–16] in order to
study group theoretic properties of the various well-known families of orthogonal polynomials,
which can be viewed as q-extensions of the classical Hermite polynomials. So our purpose
here is to formulate a unified approach to deriving all of these results, which correspond to the
q-linear spectrum.

An important aspect to observe at this point is that we shall mainly (except for the
examples in subsection 4.2) confine our attention to those families of q-polynomials, which
satisfy discrete orthogonality relation of the type (5). The explanation of such preference is
that the factorization of difference equations for instances of q-polynomials with continuous
orthogonality property has been already thoroughly studied in [12–16]. Observe also that our
approach still remains valid in the limit as q → 1; so classical counterparts of q-polynomials,
which will be discussed in this paper, are in fact incorporated as appropriate limit cases. But
the reader who desires to know more about the factorization in the cases of classical orthogonal
polynomials (such as the Kravchuk, Charlier, Meixner, Meixner–Pollaczek, and Hahn) may
be referred to [17, 18] and references therein.

The paper is organized as follows. In section 2 we associate with each family of
q-polynomials a ‘q-Hamiltonian’ H(s; q) (via the second-order difference equation) and
construct two difference operators a(s; q) and b(s; q), which factorize the operator H(s; q).
Our main results are given in section 3: they are formulated in theorems 3.4—which
gives a simple necessary and sufficient condition that the q-Hamiltonian H(s; q) admits
the factorization in terms of the operators a(s; q) and b(s; q), which satisfy the relation
a(s; q)b(s; q) − qγ b(s; q)a(s; q) = I for some γ , and 3.5—stating that the eigenvalues
of the difference equation (1) in this case should be of the form λn(q) = C1q

n + C3 or
λn(q) = C2q

−n + C3. In section 4 several relevant examples of particular q-families of
orthogonal polynomials are illustrated.

2. Factorization operators

Let us introduce a set of functions 
n


n(s; q) = d−1
n A(s)

√
ρ(s)Pn(s; q), (7)

where dn is the norm of the q-polynomials Pn(s; q), ρ(s) is the solution of the Pearson
equation (6), and A(s) is an arbitrary continuous function, A(s) �= 0 in the interval (a, b) of
orthogonality of Pn. If the polynomials Pn(s; q) possess the discrete orthogonality property
(5), then the functions 
n(s; q) satisfy

〈
n(s; q)
m(s; q)〉 =
b−1∑
s=a


n(s; q)
m(s; q)
∇x1(s)

A2(s)
= δn,m. (8)

Note that if A(s) = √∇x1(s), then the set (
n)n is an orthonormal set. Obviously, in the case
of a continuous orthogonality (as for the Askey–Wilson polynomials) one needs to change the
sum in (8) by a Riemann integral [3, 5].

Next, we define the q-Hamiltonian H(s; q) of the form

H(s; q) := 1

∇x1(s)
A(s)H(s; q)

1

A(s)
, (9)
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where

H(s; q) := −
√

σ(−s − µ + 1)σ (s)

∇x(s)
e−∂s −

√
σ(−s − µ)σ(s + 1)

�x(s)
e∂s

+

(
σ(−s − µ)

�x(s)
+

σ(s)

∇x(s)

)
I, (10)

eα∂sf (s) = f (s + α) for all α ∈ C and I is the identity operator. If we now use the identity
∇ = � − ∇� and equation (1), we find that

H(s; q)
n(s; q) = λn
n(s; q), (11)

i.e., the functions 
n(s; q), defined in (7), are the eigenfunctions of the associated operator
H(s; q).

Our first step is to find two operators a(s; q) and b(s; q) such that the Hamiltonian
H(s; q) = b(s; q)a(s; q), i.e., the operators a(s; q) and b(s; q) factorize the q-Hamiltonian
H(s; q). But before exhibiting their explicit form let us point out that if there exists a pair of
such operators, then there are infinitely many of them. Indeed, let a(s; q) and b(s; q) be such
operators that H(s; q) = b(s; q)a(s; q) and let U(s; q) be an arbitrary unitary operator, i.e.,
U †(s; q)U(s; q) = I . Then the operators

ã(s; q) := U(s; q)a(s; q), b̃(s; q) := b(s; q)U †(s; q),

also factorize H(s; q) for

b̃(s; q)̃a(s; q) = b(s; q)U †(s; q)U(s; q)a(s; q)

= b(s; q)Ia(s; q) = b(s; q)a(s; q) = H(s; q).

This arbitrariness in picking up a particular unitary operator U(s) is essential because it
enables one to construct a closed algebra, which contains a Hamiltonian H(s; q) itself. An
explicit form of the spectrum of this Hamiltonian may then be found by purely algebraic
arguments from knowledge of representations of this algebra (which is therefore referred to
as a dynamical algebra).

If one applies the standard factorization procedure to equation (1), then the following
difference operators emerge.

Definition 2.1. Let α be a real number and A(s) an arbitrary continuous non-vanishing
function in (a, b). We define a family of α-down and α-up operators by

a↓
α(s; q) := A(s)√∇x1(s)

e−α∂s

(
e∂s

√
σ(s)

∇x(s)
−
√

σ(−s − µ)

�x(s)

)
1

A(s)
,

a↑
α(s; q) := 1

∇x1(s)
A(s)

(√
σ(s)

∇x(s)
e−∂s −

√
σ(−s − µ)

�x(s)

)
eα∂s

√∇x1(s)

A(s)
,

(12)

respectively.

A straightforward calculation (by using the simple identity e∂s ∇ = �) shows that for all α ∈ R

H(s; q) = a↑
α(s; q)a↓

α(s; q), (13)

i.e., the operators a↓
α(s; q) and a↑

α(s; q) factorize the Hamiltonian, defined in (9). i.e., we have
the following:

Theorem 2.2. Given a q-Hamiltonian (9) H(s; q), then the operators a↓
α(s; q) and a↑

α(s; q)

defined in (12) are such that for all α ∈ C, H(s; q) = a↑
α(s; q)a↓

α(s; q).
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Our next step is to find a dynamical algebra, associated with the Hamiltonian H(s; q). To this
end we will need the following definition.

Definition 2.3. A function f (z) is said to be a linear-type function of z, if there exist two
functions F and G, such that for all z, ζ ∈ C, this function f (z) can be represented as

f (z + ζ ) = F(ζ )f (z) + G(ζ).

A particular case of the linear-type functions are the q-linear functions, i.e., the functions of the
form f (z) = Aqz + B. For these functions f (z + ζ ) = F(ζ )f (z) + G(ζ), where F(ζ ) = qζ

and G(ζ) = B(1 − qζ ).

Remark 2.4. If we use the expression in (3) for the eigenvalues λn, then it is straightforward
to see that λn is a q-linear function of n if and only if σ̃ ′′ = ±kq τ̃

′. Moreover, in this case we
have

σ̃ ′′ = kq τ̃
′ ⇒ λn(q, +) = τ̃ ′

1 − q
(qn − 1),

and

σ̃ ′′ = −kq τ̃
′ ⇒ λn(q,−) = τ̃ ′

1 − q−1
(q−n − 1). (14)

Note that λn(q,−) = λn(q
−1, +), i.e., the second case can be obtained form the first one just

by changing q to q−1.

Proposition 2.5. The function λn is a q-linear function of n if and only if it satisfies λn+1 =
qλn + C.

Proof. A straightforward computation shows that if λn is a q-linear function of n, then it
satisfies the recurrence formula λn+1 = qλn + C, where C is a constant (in this case C = λ1).
But the general solution of the difference equation λn+1 = qλn + C is λn = Aqn + D, where
A and D are, in general, non-vanishing constants. �

Remark 2.6. Note that if λn is a q-linear function of n, then λn satisfies the recurrence relation
λn+γ − qγ λn = C for any numbers γ and C.

Finally, we have the following straightforward lemma:

Lemma 2.7. Let x(s) be a q-linear function of s, and λn be the eigenvalue of the difference
equation of hypergeometric type (1). Then λn is a q-linear function of n if and only if
�(2)(σ (s)) = 0 and q−1-linear function of n if and only if �(2)(σ (−s − µ)) = 0, where �(2)

is the operator �(2) = �
�x1(s)

�
�x(s)

.

Proof. It follows from equation (14) and the fact that �(2)(σ (s)) = [2]q
2 (σ̃ ′′ − τ̃ ′kq) and

�(2)(σ (−s − µ)) = [2]q
2 (σ̃ ′′ + τ̃ ′kq). �

3. Dynamical algebra

We begin this section with the following definition.

Definition 3.1. Let ς be a real number, and let a(s; q) and b(s; q) be two operators. We
define the ς -commutator of a and b as

[a(s; q), b(s; q)]ς = a(s; q)b(s; q) − ςb(s; q)a(s; q).
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Proposition 3.2. Let H(s; q) be an operator, such that there exist two operators a(s; q)

and b(s; q) and two real numbers ς and �, such that H(s; q) = b(s)a(s; q), and
[a(s; q), b(s; q)]ς = �. Then, if 
(s; q) is an eigenvector of the Hamiltonian H(s; q),
associated with the eigenvalue λ, we have

1. H(s; q){a(s; q)
(s; q)} = ς−1(λ − �){a(s; q)
(s; q)}, i.e., a(s; q)
(s; q) is the
eigenvector of H(s; q), associated with the eigenvalue ς−1(λ − �),

2. H(s; q){b(s; q)
(s; q)} = (� + ςλ){b(s; q)
(s; q)}, i.e., b(s; q)
(s; q) is the
eigenvector of H(s; q), associated with the eigenvalue � + ςλ.

Proof. In the first case, since H(s; q)
(s; q) = λ
(s; q),

H(s; q){a(s; q)
(s; q)} = b(s; q)a(s; q){a(s; q)
(s; q)}
= ς−1(a(s; q)b(s; q) − �){a(s; q)
(s; q)}
= ς−1(λ − �){a(s; q)
(s; q)}.

By the same token, in the second case

H(s; q){b(s; q)
(s; q)} = b(s; q)a(s; q)b(s; q)
(s; q) = b(s; q)(� + ςλ)
(s; q)

= (� + ςλ){b(s; q)
(s; q)}. �

In the same way one can prove that

a(s; q)b(s; q)
(s; q) = (� + ςλ)
(s; q). (15)

Moreover, if 
(s; q) is an eigenvector of the Hamiltonian H(s; q) (or of the operator
a(s; q)b(s; q)), then ak(s; q)
(s; q) and bk(s; q)
(s; q) are, in general, also eigenvectors.

Remark 3.3. Obviously, the condition [a(s; q), b(s; q)]ς = I can be changed to
[a(s; q), b(s; q)]ς = �, where � is an arbitrary nonzero constant. In fact, if the operators
a(s; q) and b(s; q) satisfy the q-commutation relation [a(s; q), b(s; q)]ς = �, then the
operators a(s; q) = �−1/2a(s; q) and b(s; q) = �−1/2b(s; q) satisfy [a(s; q), b(s; q)]ς = I

and H(s; q) = �b(s; q)a(s; q).

Proposition 3.2 thus refers to the case of a system, described by a Hamiltonian H(s; q),
which admits the factorization (13) in terms of the operators a(s; q) and b(s; q), satisfying
the q-commutation relation [a(s; q), b(s; q)]ς = I . Moreover, it tells us how to construct a
dynamical symmetry algebra for such a case in a direct fashion [19]. Indeed, let us assume
that [a(s; q), b(s; q)]ς = I, ς = q2(orq−2) and b(s; q) = a†(s; q). Then one can rewrite the
q2-commutator a(s; q)a†(s; q) − q2a†(s; q)a(s; q) = I in the following form

[a(s; q), a†(s; q)] := a(s; q)a†(s; q) − a†(s; q)a(s; q)

= I − (1 − q2)a†(s; q)a(s; q) := q2N(s),

where, by definition, the operator N(s) is equal to N(s) = ln[I − (1 − q2)a†(s; q)a(s; q)]/
ln q2. From this definition of N(s) it follows that

[N(s), a(s; q)] = −a(s; q), [N(s), a†(s; q)] = a†(s; q), (16)

i.e., N(s) is the number operator. The next (and final) step is to introduce a new set of the
operators

b(s; q) := q−N(s)/2a(s; q), b†(s; q) := a†(s; q)q−N(s)/2,

which satisfy the following commutation relation:

b(s; q)b†(s; q) − qb†(s; q)b(s; q) = q−N(s),
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readily derived with the aid of (16). The operators b(s; q), b†(s; q), and N(s) directly lead to
the dynamical algebra suq(1, 1) with the generators

K0(s) = 1
2 [N(s) + 1/2], K+(s) = β(b†(s; q))2,

K−(s) = βb2(s; q), β−1 = q + q−1.

It is straightforward to verify that the generators thus defined satisfy the standard commutation
relations

[K0(s),K±(s)] = ±K±(s), [K−(s),K+(s)] = [2K0(s)]q2 ,

of the algebra suq(1, 1) (see e.g. [20]).
Thus in the case when the operators a(s; q) and b(s; q), which factorize the Hamiltonian

H(s; q), satisfy the q-commutation relation [a(s; q), b(s; q)]ς2 = I and b(s; q) = a†(s; q),
the appropriate dynamical symmetry algebra is suς (1, 1). So the question arises: what are
the conditions for insuring that such q-commutator takes place? In other words, we have the
following:

Problem 1. To find two operators a(s; q) and b(s; q) and a constant ς such that the
Hamiltonian H(s; q) = b(s; q)a(s; q) and [a(s; q), b(s; q)]ς = I .

For the first part we already have the answer (see theorem 2.2). The solution of the second
one is formulated in the following two theorems.

Theorem 3.4. Let H(s; q) be the following difference operator (q-Hamiltonian):

H(s; q) = 1

∇x1(s)
A(s)H(s; q)

1

A(s)
. (17)

The operators b(s; q) = a↑
α(s; q) and a(s; q) = a↓

α(s; q) given in (12) factorize the
Hamiltonian H(s; q) (17) and satisfy the commutation relation [a(s; q), b(s; q)]ς = � for a
certain real number ς if and only if the following two conditions hold:

∇x(s)

∇x1(s − α)

√
∇x1(s − 1)∇x1(s)

∇x(s − α)�x(s − α)

√
σ(s − α)σ(−s − µ + α)

σ(s)σ (−s − µ + 1)
= ς, (18)

and

1

�x(s − α)

(
σ(s − α + 1)

∇x1(s − α + 1)
+

σ(−s − µ + α)

∇x1(s − α)

)
− ς

1

∇x1(s)

(
σ(s)

∇x(s)
+

σ(−s − µ)

�x(s)

)
= �.

(19)

Proof. Taking the expression of the operators a↑
α (s) and a↓

α (s), a straightforward calculus
shows that a↓

α (s)a↑
α (s) = A1(s) e∂s + A2(s) e−∂s + A3(s)I , where

A1(s) = −
√

∇x1(s + 1)

∇x1(s)

A(s)

A(s + 1)

√
σ(s + 1 − α)σ(−s − µ − 1 + α)

�x(s − α)�x(s + 1 − α)

1

∇x1(s + 1 − α)
,

A2(s) = −
√

∇x1(s − 1)

∇x1(s)

A(s)

A(s − 1)

√
σ(s − α)σ(−s − µ + α)

�x(s − 1 − α)�x(s − α)

1

∇x1(s − α)
,

A3(s) = 1

�x(s − α)

[
σ(s + 1 − α)

∇x1(s + 1 − α)
+

σ(−s − µ + α)

∇x1(s − α)

]
.

(20)
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In the same way, using (10) and (9) we have a↑
α (s)a↓

α (s) = H(s; q) = B1(s) e∂s + B2(s) e−∂s +
B3(s)I , where

B1(s) = − 1

∇x1(s)

A(s)

A(s + 1)

√
σ(−s − µ)σ(s + 1)

∇x(s + 1)
,

B2(s) = − 1

∇x1(s)

A(s)

A(s − 1)

√
σ(−s − µ + 1)σ (s)

∇x(s)
,

B3(s) = 1

∇x1(s)

[
σ(s)

∇x(s)
+

σ(−s − µ)

�x(s)

]
.

(21)

Consequently,[
a↓

α (s), a↑
α (s)

]
ς

= (A1(s) − ςB1(s)) e∂s + (A2(s) − ςB2(s)) e−∂s + (A3(s) − ςB3(s))I. (22)

To eliminate the two terms in the right-hand side of (22), which are proportional to the
difference operators exp(±∂s), one must require that

A1(s) − ςB1(s) = 0, A2(s) − ςB2(s) = 0. (23)

Offhand, it is not evident that one can satisfy both of the relations (23), which only involve
the same constant ς . But it is straightforward to verify from (20) and (21) that

A1(s)B2(s + 1) = A2(s + 1)B1(s),

or, equivalently,

A1(s)

B1(s)
= A2(s + 1)

B2(s + 1)
.

Hence, the requirement that A1(s) = ςB1(s) entails the relation A2(s) = ςB2(s), and vice
versa. From (22) it is now evident that the commutator

[
a↑

α (s), a↓
α (s)

]
ς

is a constant if (23)
holds and the factor A3(s)− ςB3(s) is a constant. Thus, the required conditions (18) and (19)
immediately follow. �

Theorem 3.5. Let (
n)n be the eigenfunctions of H(s; q) corresponding to the eigenvalues
(λn)n and suppose that problem 1 has a solution for � �= 0. Then, the eigenvalues λn of the
difference equation (11) are q-linear or q−1-linear functions of n, i.e., λn = C1q

n + C3 or
λn = C2q

−n + C3, respectively.

Proof.5 In the following we use the notation ς = qγ . Suppose that problem 1 has a solution
with � �= 0, and λn is not a q-linear (respectively, q−1) function of n. From proposition 3.2
we know that a↑

α(s; q)
n(s; q) is and eigenvector of H(s; q) corresponding to the eigenvalue
� + qγ λn. If we denote by 
m(n);q such eigenvector where m(n) is a function of n, then we
have � + qγ λn = λm(n). Then using (3) we get

λm(n) = C1q
m(n) + C2q

−m(n) + C3, C1C2 = Lq. (24)

On the other hand,

λm(n) = � + qγ λn = C1q
γ qn + C2q

γ q−n + qγ C3 + � = C ′
1q

n + C ′
2q

−n + C ′
3. (25)

But here, since λm(n) is an eigenvalue of (1), again we have the condition C ′
1C

′
2 = Lq , thus

C1C2 = Lq = C ′
1C

′
2 = C1C2q

2γ so q2γ = 1, i.e., γ = 0, or C1C2 = 0. In the first case,
equating (24) and (25), we have that C ′

3 = C3q
γ + � = C3, i.e., � = 0 that is a contradiction.

Thus C1C2 = 0 from where the result easily follows. �
5 For an alternative proof in the case α = 0 see the appendix.
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It is worth noting that the q-linearity of the eigenvalues of H(s; q) is only the necessary
condition, i.e., it is not sufficient. So there are cases when the eigenvalues λn(q) are q-linear
(for instance, those which correspond to the q-Meixner, the q-Charlier and the q-Laguerre
polynomials with a �= q−1/2), but the corresponding q-Hamiltonians H(s; q) do not admit the
factorization in terms of q-commuting operators. This just reflects the fact that an appropriate
dynamical algebra is not suq(1, 1), and one has to consider a more complicated quadratic
algebra AW(3) [21]. The problem of finding an explicit connection between the generators of
the algebra AW(3) and the operators a(s; q) and b(s; q), which factorize the q-Hamiltonians
for these cases, will be addressed in a separate publication.

Remark 3.6. A special important case of the nonlinear lattice is when x(s) = 1
2 (qs + q−s).

In this case if we put α = 1
2 , then the conditions (18) and (19) of theorem 3.4 becomes√

σ
(
s − 1

2

)
σ
(−s + 1

2

)
σ(s)σ (−s + 1)

= ς,

and

1

∇x1(s)

(
σ
(
s + 1

2

)
�x(s)

+
σ
(−s + 1

2

)
∇x(s)

)
− ς

1

∇x1(s)

(
σ(s)

∇x(s)
+

σ(−s)

�x(s)

)
= �,

respectively. Moreover, if we put A(s) = 1 then, H(s; q) = (∇x1(s))
−1H(s; q) and the

α-operators simplify

a
↓
1/2(s) = 1

∇x1(s)

(
e

1
2 ∂s

√
σ(s) − e− 1

2 ∂s

√
σ(−s)

)
,

a
↑
1/2(s) = 1

∇x1(s)

(√
σ(s) e− 1

2 ∂s −
√

σ(−s) e
1
2 ∂s
)
.

Now we can formulate the

Problem 2. To find two operators a(s; q) and b(s; q) and a constant ς such that the
Hamiltonian H(s; q) = b(s; q)a(s; q) and [a(s; q), b(s; q)]ς = I and such that a(s; q)

and b(s; q) are the lowering and raising operators, i.e.,

a(s; q)
n(s; q) = Dn
n−1(s; q) and b(s; q)
n(s; q) = Un
n+1(s; q). (26)

Again, without loss of generality, we will change the condition [a(s; q), b(s; q)]ς = I into

[a(s; q), b(s; q)]ς = � and chose � = λ1.

Also the operators b(s; q) = a↑
α(s; q) and a(s; q) = a↓

α(s; q), given in (12), provide the
factorization of H(s; q).

If we now apply b(s; q) to the first equation of (26) and use the second one as well as
(11), we find that λn = DnUn−1. On the other hand, applying a(s; q) to the second equation
in (26) and using the first one as well as (15) we obtain λ1 + ςλn = UnDn+1 = λn+1. Thus,
using proposition 2.5 we conclude that λn should be a ς -linear function, i.e., λn has the form
λn = Aςn + D, where A and D are non-vanishing constants. Moreover, using the recurrence
λ1 + ςλn = λn+1 and proposition 3.2 we obtain that

H(s; q){a(s; q)
n(s; q)} = λn−1{a(s; q)
n(s; q)},
H(s; q){b(s; q)
n(s; q)} = λn+1{b(s; q)
n(s; q)},
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i.e., a(s; q)
n(s; q) is the eigenvector associated with the eigenvalue λn−1 and b(s; q)
n(s; q)

is the eigenvector associated with the eigenvalue λn+1, so they really are the lowering and raising
operators associated with the Hamiltonian H(s; q).

The next important question to be considered is when the α-operators are mutually adjoint?
Obviously the answer to this question depends on how the scalar product is defined. As an
example, let us consider the discrete orthogonality case (8) and compute

〈
a↓

α
n+1,
k

〉
:〈

a↓
α(s; q)
n+1(s; q),
k(s; q)

〉
=

b−1∑
s=a

√∇x1(s)ρ(s)

dndn+1

[
e−α∂s

(√
σ(s + 1)ρ(s + 1)

∇x(s + 1)
Pn+1(s + 1; q)

−
√

σ(−s − µ)ρ(s)

�x(s)
Pn+1(s; q)

)]
Pk(s; q)

=
b−1∑
s=a

√∇x1(s)ρ(s)

dndn+1

[
e−α∂s

(√
σ(−s − µ)ρ(s)

�x(s)
�Pn+1(s; q)

)]
Pk(s; q)

=
b−1∑
s=a

√∇x1(s)ρ(s)

dndn+1

√
σ(−s − µ + α)ρ(s − α)

�x(s − α)
�Pn+1(s − α; q)Pk(s; q),

where the second equality follows from the Pearson equation (6). Next we have〈

n+1(s; q), a↑

α(s)
k(s; q)
〉

=
b−1∑
s=a

√
σ(s)ρ(s)

dndn+1
√∇x(s)

[e−∂s (eα∂s

√
∇x1(s)ρ(s)Pk(s; q))]Pn+1(s; q)︸ ︷︷ ︸
S1

−
b−1∑
s=a

√
σ(−s − µ)ρ(s)

dndn+1
√

�x(s)
[eα∂s (

√
∇x1(s)ρ(s)Pk(s; q))]Pn+1(s; q)︸ ︷︷ ︸
S2

.

If we use the boundary conditions σ(s)ρ(s)|s=a,b = 0, then the sum S1 becomes

S1 =
b∑

s=a+1

√
σ(s)ρ(s)

dndn+1
√∇x(s)

[e−∂s (eα∂s

√
∇x1(s)ρ(s)Pk(s; q))]Pn+1(s; q) (s → s + 1)

=
b−1∑
s=a

√
σ(s + 1)ρ(s + 1)

dndn+1
√∇x(s + 1)

[(eα∂s

√
∇x1(s)ρ(s)Pk(s; q))]Pn+1(s + 1; q)

=
b−1∑
s=a

√
σ(−s − µ)ρ(s)

dndn+1
√

�x(s)
[eα∂s (

√
∇x1(s)ρ(s)Pk(s; q))]Pn+1(s + 1; q),

where the last equality holds due to the Pearson equation (6). Now subtracting S1 − S2 yields〈

n+1(s; q), a↑

α(s)
k(s; q)
〉

=
b−1∑
s=a

√
σ(−s − µ)ρ(s)

dndn+1
√

�x(s)
[eα∂s (

√
∇x1(s)ρ(s)Pk(s; q))]�Pn+1(s; q)

=
b−1∑
s=a

√
σ(−s − µ)ρ(s)

dndn+1
√

�x(s)

√
∇x1(s + α)ρ(s + α)Pk(s + α; q)�Pn+1(s; q).
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Then, in the discrete case, a sufficient condition for the operators a↑
α(s; q) and a↓

α(s; q) to
be mutually adjoint, i.e.,

〈
a↓

α(s)
n+1(s; q),
k(s; q)
〉 = 〈


n+1(s; q), a↑
α(s)
k(s; q)

〉
, is that

α = 0. For the general case as well as for the discrete cases when α �= 0, the problem requires
a more detailed study of each case. A discussion of these cases will be considered elsewhere.

4. Examples

In this section we will exhibit several examples involving some well-known families of
q-polynomials. Let us point out that from the whole q-Askey tableau [7] we need only to
consider those cases, when λn is a q-linear or q−1-linear function of n (see theorem 3.5).

4.1. The linear lattice x(s) = c1q
s + c3: the q-Hahn tableau

We start with the so-called q-Hahn tableau (see e.g. [7, 8] and references therein). Taking into
account 3, the α-operators are chosen in such a way that A(s) = √∇x1(s), so the orthonormal
functions are defined by


n(s; q) = dn
−1
√

ρ(s)∇x1(s)Pn(s; q)

and satisfy the discrete orthogonality relation

b−1∑
si=a


n(si; q)
m(si; q) = δnm.

By using theorem 3.4, one can solve the factorization problem 1 for the q-Hahn tableau.
Before starting with some relevant examples, we recall that for the q-linear lattice

x(s) = c1q
s + c3,

eq(s) := ∇x(s)

∇x1(s − α)

√
∇x1(s − 1)∇x1(s)

∇x(s − α)�x(s − α)
= q2α−1,

whereas if x(s) = c1q
−s + c3, then eq(s) = q−2α+1.

Remark 4.1. Let x(s) = qs . Then in the case when σ(s) or σ(−s − µ) = σ(s) + τ(s)∇x1(s)

are constants, the operators (12) define a dynamical algebra if and only if α = 1 and ς = q

or α = 0 and ς = q−1, respectively. To prove this assertion it is sufficient to use the formula
(18) that yields, for the first case

eq(s)

√
σ(−s − µ + α)

σ(−s − µ + 1)
= q2α−1

√
σ(−s − µ + α)

σ(−s − µ + 1)
= ς.

Choosing α = 1 we have that ς = q. The other case is analogous. These cases constitute the
most simple ones.

4.1.1. Stieltjes–Wigert q-polynomials Sn(x; q) The Stieltjes–Wigert functions in x(s) = qs ,
i.e. the functions, associated with the Stieltjes–Wigert polynomials, are defined by


n(x; q) = 1

dn

√
(−x,−q/x; q)∞ 1φ1

(
q−n

0

∣∣∣∣∣q;−xqn+1

)
, x(s) = qs,

dn = qn/2

(q; q)∞

√
(qn+1; q)∞

log q−1
.
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In this case we have chosen A(s) = √∇x1(s). The above functions 
n(x; q) possess the
following orthogonality property

∫∞
0 
n(x; q)
m(x; q) dx = δn,m.

Since for the Stieltjes–Wigert q-polynomials σ(s) = qs−1 and σ(s) + τ(s)∇x1(s) = q2s

[7], one can define the following Hamiltonian:

H(s; q) = 1

(1 − q)

{
(1 + q−s)I − q−(s+1)/2 e∂s − q−s/2 e−∂s

}
,

for which one has H(s; q)
n(q
s; q) = 1−qn

1−q

n(q

s; q).

Next we check the conditions of theorem 3.4: the first condition (18) yields ς = qα/2 and
substituting it in the second one, we obtain that it holds when α = 2, i.e., ς = q and therefore

a↓(s; q) := a
↓
2 (s; q) = 1√

1 − q
(e−2∂s − e−∂s q−s/2),

a↑(s; q) := a
↑
2 (s; q) = 1√

1 − q
(e2∂s − q−s/2 e∂s ),

H(s; q) = a↑(s; q)a↓(s; q) and [a↓(s; q), a↑(s; q)]q = I . It is not hard to verify that in
this case the operators a↑(s; q) and a↓(s; q) are the lowering and raising operators for the
functions 
n(q

s; q) (see [7], p 117, (3.27.6) and (3.27.8)). We remind the reader that the
moment problem, associated with the Stieltjes–Wigert polynomials, is indeterminate [22, 23]
and therefore there are several distinct weight functions (both continuous and discrete ones),
with respect to which they are orthogonal. A similar result for the case of a discrete
orthogonality condition was first considered in [12].

4.1.2. Al-Salam and Carlitz I and II q-polynomials U(a)
n (x; q) and V (a)

n (x; q). The Al-
Salam–Carlitz polynomials of types I and II depend on an additional parameter a and therefore
they occupy the next level in the Askey scheme (see [7 p 114]). Since these two families are
interrelated,

V (a)
n (x; q) = U(a)

n (x; q−1),

it is sufficient to consider only one of them.
Let us define the functions [7, p 114]


n(s; q) = 1

dn

as/2qs2/2

√
(q, aq; q)s

2φ0

(
q−n, q−s

−

∣∣∣∣∣q; qn

a

)
, a > 0,

dn = (−1)n(aq)−n/2

√
(q; q)n

(aq; q)∞
,

which satisfy the discrete orthogonality relation
∑∞

k=0 
n(k; q)
m(k; q) = δm,n. Since for
this family σ(s) = (q−s − 1)(q−s − a) and σ(s) + τ(s)∇x1(s) = a, where x(s) = q−s , then
one derives that the difference Hamiltonian H(s; q) has the following form

H(s; q) = 1

1 − q

[
aq2s+1 + (1 − qs)(1 − aqs) − e∂s

√
a(1 − qs)(1 − aqs)qs−1/2

−
√

a(1 − qs)(1 − aqs)qs−1/2 e−∂s
]
.

Thus H(s; q)
n(s; q) = 1−qn

1−q

n(s; q). This Hamiltonian is factorized, H(s; q) =

a↑(s; q)a↓(s; q), in terms of the difference operators

a↓(s; q) := a
↓
0 (s; q) = 1√

1 − q

[√
aqs+1/2 − e∂s

√
(1 − qs)(1 − aqs)

]
,
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a↑(s; q) := a
↑
0 (s; q) = 1√

1 − q

[√
aqs+1/2 −

√
(1 − qs)(1 − aqs) e−∂s

]
,

that satisfy the commutation relation [a↓(s; q), a↑(s; q)]q = I . Thus the dynamical algebra
for this family is also suq(1, 1). As in the previous case, the operators a

↓
2 (s; q) and a↑(s; q)

are the lowering and raising operators for the functions 
n(s; q) (see [7]).
A special case of the Al-Salam and Carlitz q-polynomials of type II are the discrete

Hermite q-polynomials h̃n(x; q) = i−nV (−1)
n (ix; q) of type II. All these cases are closely

related to some models of q-oscillators [10, 12–16].

4.1.3. Wall polynomials pn(x; a|q). Our next example is the little q-Laguerre/Wall
polynomials. In this case we define the function


n(s; a; q) = 1

dn(a; q)

(aq)s/2

√
(q; q)s

2φ1

(
q−n, 0

aq

∣∣∣∣∣q; qs+1

)
,

where x := x(s) = qs and A(s) = √∇x1(s).
This function satisfies the discrete orthogonality relation

∑∞
k=0 
n(k; q)
m(k; q) = δn,m,

provided that

dn(a; q) = (aq)n/2

(aq; q)∞

√
(q; q)n(aqn+1; q)∞.

In this case σ(s) = q−1qs(qs −1) and σ(s)+τ(s)∇x1(s) = −aqs ; thus the corresponding
Hamiltonian is

H(s; a; q) = 1

(1 − q)x
(q(a + 1 − x)I −

√
aq(1 − qx) e∂s − q

√
aq(1 − x) e−∂s )

and H(s; a; q)
n(s; a; q) = 1−q−n

1−q−1 
n(s; a; q).

Then, the first condition of theorem 3.4 leads to the value α = 0 and ς = q−1/2 and the
second condition holds if and only if the parameter a of the above functions is equal to q−1/2,
but they do not lead to the lowering and raising operators.

So to introduce the lowering and raising operators, one has to consider the following
operators:

a(s; a; q) := 1√
(1 − q)x

(
√

(1 − qx) e∂s − √
aqI),

a†(s; a; q) := 1√
(1 − q)x

(
√

q(1 − x) e−∂s − √
aqI).

The above mutually adjoint operators factorize the Hamiltonian H(s; a; q), i.e., H(s; a; q) =
a†(s; a; q)a(s; a; q), and they satisfy the commutation relation

a(s; a/q; q)a†(s; a/q; q) − q−1a†(s; a; q)a(s; a; q) = I.

From this relation it follows that their action on the functions 
(s; a; q) is given by

a(s; a; q)
n(s; a; q) =
√

1 − q−n

1 − q−1

n−1(s; aq; q),

a†(s; a/q; q)
n(s; a; q) =
√

1 − q−n−1

1 − q−1

n+1(s; a/q; q).

(27)
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To verify these formulae one needs to use the property of the normalization constant dn(a; q)

that

dn(a; q) = (1 − a)qn/2√
a(1 − qn+1)

dn+1(a/q; q).

Observe that the operators a(s; a; q) and a†(s; a; q) not only lower and raise, respectively, the
index n, but they alter also the parameter a. That is why an appropriate dynamical algebra in
this case is not suq(1, 1) (see the discussion above, which follows the proof of theorem 3.4
in section 3). The formulae (27) are equivalent to proving that the forward and backward
shift operators for the little q-Laguerre polynomials have the form (see [7] p 107, (3.20.6) and
(3.20.8))

(e∂s − I )pn(q
s; a; q) = qs+1−n 1 − qn

1 − aq
pn−1(q

s; aq; q),

[(1 − qs) e−∂s − aI ]pn(q
s; a; q) = (1 − a)pn+1(q

s; a/q; q),

respectively.
To conclude this example let us mention that the Charlier q-polynomials c

(µ)
n (s; q) on the

lattice x(s) = qs , introduced in [24], are a special case of the Wall polynomials, considered
above.

4.1.4. Discrete Laguerre q-polynomials L(α)
n (x; q). Let us consider now the Hamiltonian,

associated with the discrete Laguerre q-polynomials. For these polynomials σ(s) = q−1qs

and σ(s) + τ(s)∇x1(s) = aqs(qs + 1) [7]. If we put A(s) = √∇x1(s) and use the condition
(18), then we obtain that α = 1 and ς = √

q. Next we use the second condition (19), but the
corresponding expression is a constant if and only if a = q−1/2, i.e., not for any value of the
parameter a the q-Hamiltonian, associated with the discrete Laguerre q-polynomials, can be
factorized by using the α-operators, which satisfy the corresponding commutation relation.
But as in the previous case, one can define the functions


(α)
n (s; q) = d−1

n (α)
qs/2(α+1)

√
(−qs; q)∞

L(α)
n (x; q), x := x(s) = qs,

where the normalization constant dn(α) is given by

dn(α) := (−qα+1,−qα; q)
1/2
∞

(q; q)∞

(q; q)
1/2
n+α

qn/2(q; q)
1/2
n

,

and the discrete Laguerre q-polynomials L(α)
n (x; q) are

L(α)
n (x; q) := 1

(q; q)n
2φ1

(
q−n, x

0

∣∣∣∣∣q; qn+α+1

)
.

These functions satisfy the discrete orthogonality relation
∑∞

k=0 
(α)
n (k; q)
(α)

m (k; q) = δn,m

and

H(α)(s; q)
(α)
n (s; q) = 1 − qn

1 − q

(α)

n (s; q),

where the q-Hamiltonian is a difference operator of the form

H(α)(s; q) = 1

1 − q

{
[1 + (1 + q−α)q−s]I − q− s+α

2
[√

1 + qs e∂s + e−∂s

√
1 + qs

]
q− s

2
}
.
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In this case the mutually adjoint operators, that factorize the above q-Hamiltonian, are

a(s;α; q) := 1√
1 − q

(
q− α

2 I − e−∂s

√
1 + qs

)
q− s

2 ,

a†(s;α; q) := 1√
1 − q

q− s
2
(
q− α

2 I −
√

1 + qs e∂s
)
.

They satisfy the commutation relation

a(s;α − 1; q)a†(s;α − 1; q) − qa†(s;α; q)a(s;α; q) = I,

from which it follows that

a(s;α; q)
(α)
n (s; q) =

√
1 − qn

1 − q



(α+1)
n−1 (s; q),

a†(s;α − 1; q)
(α)
n (s; q) =

√
1 − qn+1

1 − q



(α−1)
n+1 (s; q).

As is the previous case, these relations yield precisely the explicit form of the forward and back-
ward shift operators, respectively, for the q-Laguerre polynomials L(α)

n (qs; q) (see [7], p 109,
(3.21.7) and (3.21,9)).

4.1.5. Other cases in the q-Hahn tableau. If one now applies theorems 3.5 and 3.4 to the
families of big q-Jacobi polynomials with b = 0 (big q-Laguerre), little q-Jacobi, q-Meixner,
q-Kravchuck, quantum q-Kravchuk, affine q-Kravchuk and alternative q-Charlier polynomials,
then for all these cases it is impossible to solve problem 1. The big and little q-Jacobi
polynomials do not admit a dynamical algebra because the corresponding eigenvalues are not
q-linear functions of n and in the other cases one of the two conditions of theorem 3.4 fails.

As an example let us consider the case of the q-Meixner polynomials. For the
q-Meixner polynomials [7], we have x(s) = q−s , σ(s) = c(x(s) − bq)/q, σ (s) + τ(s)

∇x1(s) = (x(s) − 1)(x(s) + bc) and λn = q1/2 1−qn

(1−q)2 . Then, the condition (18) gives

q
1
2 −α

√
q−2α+1(qα − qs)(bcqs + qα)(qα − bqs+1)

(qs − q)(bcqs + q)(bqs+1 − 1)
= ς.

After a careful study of the left-hand side one arrives at the conclusion that it is constant if and
only if α = 2/3, b = q−4/3, c = −q5/3 or α = 2/3, b = q−5/3, c = −q4/3. After substituting
this in the second condition (19), it becomes clear that the only possibility is the first one, but
it corresponds to a non-positive case.

Let us consider this case in more detail. The q-Meixner polynomials ([7], p 95),

Mn(q
−x; b, c; q) := 2φ1

(
q−n, q−x

bq

∣∣∣∣∣q; −qn+1

c

)
, 0 < b < q−1, c > 0, (28)

depend on two parameters b and c (in addition to the base q) and occupy one level higher in
the Askey scheme than q-Charlier and Al-Salam–Carlitz polynomials of type II. They satisfy
a difference equation

[B(x)(1 − e∂x ) + D(x)(1 − e−∂x )]Mn(q
−x; b, c; q) = (1 − qn)Mn(q

−x; b, c; q),

B(x) = cqx(1 − bqx+1), D(x) = (1 − qx)(1 + bcqx).

So q-Meixner functions, defined as


M
n (x; b, c; q) := d−1

n (b, c)

[
cx(bq; q)x

(q; q)x(−bcq; q)x

]1/2

qx(x−1)/4Mn(q
−x; b, c; q),
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are eigenfunctions of a difference ‘Hamiltonian’ HM(x; b, c; q),

HM(x; b, c; q)
M
n (x; b, c; q) = 1 − qn

1 − q

M

n (x; b, c; q),

where

HM(x; b, c; q) := 1

1 − q
[B(x) + D(x) − B1/2(x) e∂x D1/2(x) − D1/2(x) e−∂x B1/2(x)].

The q-Meixner functions satisfy the discrete orthogonality relation
∞∑

k=0


M
m (k; b, c; q)
M

n (k; b, c; q) = δmn.

One can factorize the ‘Hamiltonian’ HM(x; b, c; q),

HM(x; b, c; q) = a
↑
M(x; b, c; q)a

↓
M(x; b, c; q),

by means of the ‘lowering’ and ‘raising’ difference operators

a
↓
M(x; b, c; q) := 1√

1 − q
[e∂x D1/2(x) − B1/2(x)],

a
↑
M(x; b, c; q) := 1√

1 − q
[D1/2(x) e−∂x − B1/2(x)].

(29)

The difference operators (29) satisfy a q-commutation relation of the form

a
↓
M(x; b/q, cq; q)a

↑
M(x; b/q, cq; q) − qa

↑
M(x; b, c; q)a

↓
M(x; b, c; q) = I.

Their action on the q-Meixner functions is given by

a
↓
M(x; b, c; q)
M

n (x; b, c; q) =
√

1 − qn

1 − q

M

n−1(x; bq, c/q; q),

a
↑
M(x; b/q, cq; q)
M

n (x; b, c; q) =
√

1 − qn+1

1 − q

M

n+1(x; b/q, cq; q),

(30)

that is, they not only lower and raise, respectively, the index n, but alter also the parameters
b and c. The formulae (30) are equivalent to the statement that the forward and backward
shift operators for the q-Meixner polynomials (28) have the form (see [7], p 95, (3.13.2) and
(3.13.8))

(1 − e∂x )Mn(q
−x; b, c; q) = 1 − qn

c(1 − bq)
q−xMn−1(q

−x; bq, c/q; q),

[cqx(1 − bqx) − (1 − qx)(1 + bcqx) e−∂x ]Mn(q
−x; b, c; q)

= cqx(1 − b)Mn+1(q
−x; b/q, cq; q).

It remains only to remind the reader that when the parameter b in (28) vanishes,
the q-Meixner polynomials Mn(q

−x; 0, c; q) coincide with the q-Charlier polynomials ([7],
p 112)

Cn(q
−x; c; q) := 2φ1

(
q−n, q−x

0

∣∣∣∣∣q; −qn+1

c

)
. (31)

In this case B(x) = cqx and D(x) = 1 − qx . The appropriate formulae for the q-Charlier
polynomials (31) are therefore easy consequences of the corresponding formulae for the
q-Meixner polynomials (28) with the vanishing value of the parameter b.
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4.2. Askey–Wilson cases

Using the linearity of the difference equation (1) we can consider, without loss of generality,
the following lattice x(s) = 1

2 (qs + q−s), for which µ = 0. Then,

σ(s) = Cq−2s

4∏
i=1

(qs − qsi ) = q−2s

4∏
i=1

(qs − zi), σ (−s − µ) = Cq2s

4∏
i=1

(q−s − zi).

It is well known that the general case when the zeros of σ̃ , namely z1z2z3z4 �= 0,
corresponds to the Askey–Wilson polynomials [7]. We will use theorem 3.4 to solve the
factorization problem for the whole q-Askey tableau [7] and Nikiforov–Uvarov tableau [4, 5].

The Askey–Wilson polynomials on the lattice x(s) = 1
2 (qs +q−s) = cos θ where qs = eiθ ,

defined by [7]

pn(x(s); a, b, c, d|q) = (ab, ac, ad; q)n

an 4ϕ3

(
q−n, qn−1abcd, aq−s , aqs

ab, ac, ad

∣∣∣∣∣q; q

)
,

where a = z1, b = z2, c = z3, d = z4 and µ = 0. Their orthogonality relation is of the form∫ 1

−1
ω(x)pn(x; a, b, c, d)pm(x; a, b, c, d)dx = δnmd2

n,

where

ω(x) = h(x, 1)h(x,−1)h
(
x, q

1
2
)
h
(
x,−q

1
2
)

2π
√

1 − x2h(x, a)h(x, b)h(x, c)h(x, d)
, h(x, α) =

∞∏
k=0

[1 − 2αxqk + α2q2k],

and the norm is given by

d2
n = (abcdqn−1, abcdq2n; q)∞

(qn+1, abqn, acqn, adqn, bcqn, bdqn, cdqn; q)∞
.

The Askey–Wilson functions can be defined by


n(s; q) =
√

ω(s)A(s)

dn

pn(x(s); a, b, c, d), x(s) = cos θ, qs = eiθ .

Taking A(s) = √∇x1(s), we have the orthogonality
∫ 1
−1 
n(s; q)
m(s; q)/∇x1(s) dx =

δn,m, and H(s; q)
n(s; q) = λn
n(s; q), where λn = q(q−n − 1)(1 − abcdqn−1), and
H(s; q) is given by (9), σ(s) = Cσq−2s(qs − a)(qs − b)(qs − c)(qs − d) and µ = 0. Thus
the Hamiltonian, associated with these Askey–Wilson functions, is

H(s; q) = −1

k2
q

√
sin θ

( √
σ(s)σ (−s + 1)

sin
(
θ + i

2 log q
)√

sin(θ + i log q)
e−∂s

+

√
σ(s + 1)σ (−s)

sin
(
θ − i

2 log q
)√

sin(θ − i log q)
e∂s

)

+
1

k2
q sin θ

(
σ(s)

sin
(
θ + i

2 log q
) +

σ(−s)

sin
(
θ − i

2 log q
)) I.

If we now use remark 3.6, then the first condition of theorem 3.4 holds for α = 1
2 . In fact,

a straightforward calculations shows that

�x1(s + γ ) = kq

2
q−s−γ (qs+γ + 1)(qs+γ − 1).
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Hence, the condition (18) has the form (eiθ = qs)

q−2α+1

qs− 1
2 − 1

qs−α − 1

√
(qs−1 − 1)(qs − 1)(

qs−α− 1
2 − 1

)(
qs−α+ 1

2 − 1
)
√√√√ 4∏

i=1

(qs−α − zi)(q−s+α − zi)

(qs − zi)(q−s+1 − zi)


× qs− 1

2 + 1

qs−α + 1

√
(qs−1 + 1)(qs + 1)(

qs−α− 1
2 + 1

)(
qs−α+ 1

2 + 1
) = ς.

If we look at the expression in the second line, we find that it is a constant if and only if α = 1
2 ,

and thus the first condition transforms into√√√√∏4
i=1(q

s−1/2 − zi)(q−s+1/2 − zi)∏4
i=1(q

s − zi)(q−s+1 − zi)
= ς. (32)

Then, the simplest case for which the condition (18) holds is when z1z2 = q
1
2 and

z3z4 = q
1
2 (with the corresponding permutations of the roots). In this case ς = 1. Since

σ(s) = σ
(−s + 1

2

)
, the second condition gives

1

∇x1(s)

(
σ
(
s + 1

2

)
�x(s)

+
σ
(−s + 1

2

)
∇x(s)

− σ(s)

∇x(s)
− σ(−s)

�x(s)

)
= 0.

Thus, we have a
↑
1/2(s; q)a

↓
1/2(s) = H(s; q) and

[
a

↓
1/2(s; q), a

↑
1/2(s)

]
q

= 0, where

a
↓
1/2(s; q) = e

1
2 ∂s

√
σ(s)

−k2
q sin θ sin

(
θ + i

2 log q
) − e− 1

2 ∂s

√
σ(−s)

−k2
q sin θ sin

(
θ − i

2 log q
) ,

a
↑
1/2(s; q) =

√
σ(s)

−k2
q sin θ sin

(
θ + i

2 log q
) e− 1

2 ∂s −
√

σ(−s)

−k2
q sin θ sin

(
θ − i

2 log q
) e

1
2 ∂s .

Since the α-operators are commuting, this case is not so interesting in applications (e.g., for
q-models of the harmonic oscillators). A special case of the Askey–Wilson polynomials are
the continuous q-Jacobi polynomials corresponding to the roots a = qα′/2+1/4, b = qα′/2+3/4,
c = −qβ ′/2+1/4, d = −qβ ′/2+3/4 [7], then we can solve problem 1 only in the case when
α′ = β ′ = −1/2.

The next case is when one of the roots zi vanishes. This is the 0-Askey–Wilson
polynomials or the continuous dual q-Hahn [7]. In this case the first condition (18)
(equivalently (32) holds only when

(z1, z2, z3) = (t, 1
2 − t, 1

4

)
, t ∈ R.

With the above choice of zi , it is impossible to fulfil the second condition (19); hence it is
impossible to obtain a simple closed dynamical algebra.

4.2.1. Continuous q-Laguerre polynomials. Let us now consider the case when the Askey–
Wilson polynomials have two parameters equal to zero. In order that the condition (18)
take place, the other two non-vanishing parameters should satisfy that their product is equal
to q

1
2 . Under this condition ς = q− 1

2 . Then the second condition yields � = 4Cσ (
√

q−1)

k2
q

.

Then, the Askey–Wilson Hamiltonian with two zero roots of σ admits a factorization with
a non-trivial dynamical algebra. An example of this family is the continuous q-Laguerre
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polynomials P (a)
n (x|q) [7], x(s) = cos θ , when a = −1/2 for which the Hamiltonian has the

form (A(s) = 1)

H(s; q)=− Cσ

kq sin θ


√

(qs+1 − 1)
(
qs+1 − q

1
2
)
(q−s − 1)

(
q−s − q

1
2
)

sin
(
θ + i

2 log q
) e−∂s

+

√
(qs − 1)

(
qs − q

1
2
)
(q1−s − 1)

(
q1−s − q

1
2
)

sin
(
θ − i

2 log q
) e∂s


− Cσ

kq sin θ

(
(qs − 1)

(
qs − q

1
2
)

sin
(
θ + i

2 log q
) +

(q−s − 1)
(
q−s − q

1
2
)

sin
(
θ − i

2 log q
) )

I,

and

a
↓
1/2(s; q) =

√−Cσ

kq sin θ

(
e

1
2 ∂s

√
(qs − 1)

(
qs − q

1
2
)− e− 1

2 ∂s

√
(q−s − 1)

(
q−s − q

1
2
))

,

a
↑
1/2(s; q) =

√−Cσ

kq sin θ

(√
(qs − 1)

(
qs − q

1
2
)

e− 1
2 ∂s −

√
(q−s − 1)

(
q−s − q

1
2
)

e
1
2 ∂s

)
.

Then for the functions


n(x(s)) =
√(

q
1
2 ; q
)
n

(
q, q

1
2 ; q
)
∞ω(s)

(q; q)n
3ϕ2

(
q−n, q−s , qs

q
1
2 , 0

∣∣∣∣∣q; q

)
, qs = eiθ , x(s) = cos θ,

we have the orthogonality
∫ 1
−1 
n(x; q)
m(x; q) dx = δn,m, and

H(s; q)
n(s; q) = q(q−n − 1)
n(s; q), H(s; q) = a
↑
1/2(s; q)a

↓
1/2(s),

and [
a

↓
1/2(s; q), a

↑
1/2(s)

]
q−1/2 = 4Cσ (

√
q − 1)

k2
q

.

Thus choosing Cσ = − k2
q

4(1−√
q)

we obtain the relation
[
a

↓
1/2(s; q), a

↑
1/2(s)

]
q−1/2 = I .

The case of Askey–Wilson polynomials with three zero parameters is analogous to the
case of one zero parameter and it is not possible to solve problem 1. An example of this case
are the continuous big q-Hermite polynomials [7].

4.2.2. Continuous q-Hermite polynomials. Finally, if one takes the Askey–Wilson
polynomials with vanishing parameters a, b, c, d, this gives the continuous q-Hermite
polynomials [7]. In this case σ(z) = Cσq2z.

Let choose A(s) = √∇x1(s). Taking into account that this family is a special case of the
Askey–Wilson polynomials when all parameters a = b = c = d = 0, one directly obtains,
by using ς = 1/q, that in this case the Hamiltonian is given by

H(s; q) = −1

k2
q

√
sin θ

(
Cσq

sin
(
θ + i

2 log q
)√

sin(θ + i log q)
e−∂s

+
Cσq

sin
(
θ − i

2 log q
)√

sin(θ − i log q)
e∂s

)

+
1

k2
q sin θ

(
Cσq2s

sin
(
θ + i

2 log q
) +

Cσq−2s

sin
(
θ − i

2 log q
)) I,
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and the α-operators

a
↓
1/2(s; q) = e

1
2 ∂s

√
Cσq2s

−k2
q sin θ sin

(
θ + i

2 log q
) − e− 1

2 ∂s

√
Cσq−2s

−k2
q sin θ sin

(
θ − i

2 log q
)

a
↑
1/2(s; q) =

√
Cσq2s

−k2
q sin θ sin

(
θ + i

2 log q
) e− 1

2 ∂s −
√

Cσq−2s

−k2
q sin θ sin

(
θ − i

2 log q
) e

1
2 ∂s ,

are such that

a↑(s; q)a↓(s; q) = H(s; q) and [a↓(s; q), a↑(s; q)]1/q = 4Cσ

kq

.

Note that for getting the normalized commutation relations it is sufficient to choose Cσ = kq/4.
Another possible choice is A(s) = 1 [12], hence a straightforward calculus shows that

the two conditions in theorem 3.4 are true if ς = q−1, thus � = 4Cσk−1
q . With this choice

the orthogonality of the functions 
n is
∫ 1
−1 
n(s; q)
m(s; q) dx = δn,m. In this case, the

Hamiltonian is equal to

H(s; q) = Cσq

k2
q

{
e−∂s

sin θ sin
(
θ + i

2 ln q
) +

e∂s

sin
(
θ − i

2 ln q
)

sin θ

− 4√
q

(
1 − 1 + q

q + q−1 − 2 cos 2θ

)
I

}
,

and

a↓(s; q) := a
↓
1/2(s) =

√−Cσ

kq sin θ

(
e

1
2 ∂s qs − e− 1

2 ∂s q−s
)
,

a↑(s; q) := a
↑
1/2(s) =

√−Cσ

kq sin θ

(
qs e− 1

2 ∂s − q−s e
1
2 ∂s
)
.

In terms of these operators

H(s; q) = a↑(s; q)a↓(s; q) and [a↓(s; q), a↑(s; q)]q−1 = 4Cσ

kq

.

As before we now can choose Cσ = kq/4. This case was first considered in [13], see
also [25].
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Appendix

Here we present a simple proof of theorem 3.5 when α = 0. Note that in this case
b(s; q) = a†(s; q), i.e., the operator b is the adjoint of a.
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Theorem 3.5a. Let {
n(s; q)} be the eigenfunctions of the operator H(s; q), corresponding
to the eigenvalues {λn(q)}. Suppose that the H(s; q) admits the factorization (13). If the
operators a(s; q) and b(s; q) in (13) satisfy the q-commutation relation [a(s; q), b(s; q)]q =
I , then the eigenvalues λn(q) are q-linear or q−1-linear functions of n, i.e., either λn(q) =
C1q

n + C3 or λn(q) = C2q
−n + C3, respectively.

Proof. Obviously, the operator H(s; q) is diagonal in the basis consisting of its eigenfunctions

n(s; q). By hypothesis, this operator admits at the same time the factorization (13) in terms
of a(s; q) and b(s; q). But according to proposition 3.2 the function a(s; q)
n(s; q) is also
the eigenfunction of H(s; q), associated with the eigenvalue q−1[λn(q)−1]. Hence the a(s; q)

is either the lowering operator or the raising operator. In the former case this means that

q−1[λn(q) − 1] = λn−1(q) + C,

from which it follows that C2 = 0 (i.e., the spectrum {λn(q)} is a q-linear one) and
C = q−1[(1 − q)C3 − 1]. In latter case the corresponding relation is

q−1[λn(q) − 1] = λn+1(q) + C,

which holds when C1 = 0 (i.e., the spectrum is q−1-linear) and C = q−1[(1 − q)C3 − 1]. The
proof of the theorem is thus complete. �
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[1] Álvarez-Nodarse R and Costas-Santos R S 2001 Factorization method for difference equations of
hypergeometric-type on nonuniform lattices J. Phys. A: Math. Gen. 34 5551–69

[2] Nikiforov A F and Uvarov V B 1978 The Special Functions of Mathematical Physics (Moscow: Nauka)
Nikiforov A F and Uvarov V B 1988 The Special Functions of Mathematical Physics (Basle: Birkhauser)

[3] Nikiforov A F, Suslov S K and Uvarov V B 1991 Classical Orthogonal Polynomials of a Discrete Variable
(Springer Series in Computational Physics) (Berlin: Springer)

[4] Nikiforov A F and Uvarov V B 1993 Polynomial Solutions of hypergeometric type difference equations and
their classification Int. Transforms Spec. Funct. 1 223–49

[5] Atakishiyev N M, Rahman M and Suslov S K 1995 On classical orthogonal polynomials Constr. Approx. 11
181–226

[6] Gasper G and Rahman M 1990 Basic Hypergeometric Series (Cambridge: Cambridge University Press)
[7] Koekoek R and Swarttouw R F 1998 The Askey-scheme of hypergeometric orthogonal polynomials and its q-

analogue Reports of the Faculty of Technical Mathematics and Informatics no. 98-17 (Delft: Delft University
of Technology)
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